Belge benzerliği sonuçlarının nsga-ıı ile çok amaçlı optimizasyonu

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Sınıflandırma algoritmalarının başarı performanslarının artırımı, veri madenciliğinin önemli amaçları arasındadır. Bu tez çalışmasında, veri madenciliği sınıflandırma başarısının sezgisel yöntemlerle arttırılması incelenmiştir. Sınıflandırmada kullanılan eğitim veri seti hem benzerlik hesap sonuçları yönünden hem de sınıflandırma yeteneği yönünden optimize edilmiştir. Aynı sınıfta olan vektörlerin benzerlik sonuçlarının maksimize edilmesi, aynı zamanda farklı sınıftaki vektörlerin benzerlik sonuçlarının minimize edilmesi amaçlanmıştır. Bu çelişen iki durum için çok amaçlı sezgisel yöntemlerden olan, Sıralı Seçkin Bastırılamayan Genetik Algoritma (NSGA II) kullanılmıştır. Hatalı sınıflandırma oranlarının, optimizasyonun her iterasyonunda sıfıra daha çok yaklaştırılması hedeflenmiştir. Bu çalışmada veri madenciliğinin tüm aşamalarının sırayla gerçekleştirilmesine özen gösterilmiştir. Ham veriler işlenerek öznitelikler çıkarılmıştır. Boyut azaltma işlemleri için ise Temel Bileşen Analizi (PCA) kullanılmıştır. Veri setleri üzerinde K En Yakın Komşu Algoritması (KNN) kullanılarak yalın haldeki sınıflandırma başarıları ile optimizasyon sonrası sınıflandırma başarıları karşılaştırılmıştır. Optimizasyonun, eğitim veri setinin sınıflandırma yeteneğini arttırdığı görülmüştür. Optimize edilmiş veriler, eğitim kümesi olarak kullanıldığında sınıflandırma başarısında artış gözlemlenmiştir.

Açıklama

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye