CONSUMER CREDITS AND MACHINE LEARNING

dc.authorid0000-0001-9577-7274en_US
dc.authorscopusid58548283900en_US
dc.authorwosidJTS-3767-2023en_US
dc.contributor.authorAksu, Mervan
dc.date.accessioned2023-12-28T12:15:02Z
dc.date.available2023-12-28T12:15:02Z
dc.date.issuedJuly 2023en_US
dc.departmentMAÜ, Fakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.description.abstractThe fusion of consumer credit analysis with machine learning algorithms has revolutionized credit risk assessment, providing banks with more efficient and reliable methods for evaluating creditworthiness. By leveraging these advanced techniques, banks can enhance their risk management practices, reduce the ratio of non-performing loans, and ultimately contribute to their profitability and stability in the financial market. As machine learning continues to evolve, it is likely to play an increasingly critical role in the financial sector and beyond.en_US
dc.identifier.endpage34en_US
dc.identifier.isbn9786256408639
dc.identifier.startpage23en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12514/5322
dc.identifier.volume16en_US
dc.institutionauthorAksu, Mervan
dc.language.isoenen_US
dc.publisherEğitim yayınevien_US
dc.relation.ispartofCONSUMER CREDITS AND MACHINE LEARNINGen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConsumer Creditsen_US
dc.subjectMachine Learningen_US
dc.titleCONSUMER CREDITS AND MACHINE LEARNINGen_US
dc.title.alternativeInternational Research in Social, Human and Administrative Sciences XVIen_US
dc.typeBook Chapteren_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Mervan AKSU kitap bölümü machine leaarning.pdf
Boyut:
29.61 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: