Yazar "Asker, Mehmet Emin" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A hybrid approach consisting of 3D depthwise separable convolution and depthwise squeeze‑and‑excitation network for hyperspectral image classifcation(Earth Science Informatics, 12.09.2024) Asker, Mehmet Emin; Güngör, MustafaHyperspectral image classifcation is crucial for a wide range of applications, including environmental monitoring, precision agriculture, and mining, due to its ability to capture detailed spectral information across numerous wavelengths. However, the high dimensionality and complex spatial-spectral relationships in hyperspectral data pose signifcant challenges. Deep learning, particularly Convolutional Neural Networks (CNNs), has shown remarkable success in automatically extracting relevant features from high-dimensional data, making them well-suited for handling the intricate spatial-spectral relationships in hyperspectral images.This study presents a hybrid approach for hyperspectral image classifcation, combining 3D Depthwise Separable Convolution (3D DSC) and Depthwise Squeeze-and-Excitation Network (DSENet). The 3D DSC efciently captures spatial-spectral features, reducing computational complexity while preserving essential information. The DSENet further refnes these features by applying channel-wise attention, enhancing the model's ability to focus on the most informative features. To assess the performance of the proposed hybrid model, extensive experimental studies were carried out on four commonly utilized HSI datasets, namely HyRANK-Loukia and WHU-Hi (including HongHu, HanChuan, and LongKou). As a result of the experimental studies, the HyRANK-Loukia achieved an accuracy of 90.9%, marking an 8.86% increase compared to its previous highest accuracy. Similarly, for the WHU-Hi datasets, HongHu achieved an accuracy of 97.49%, refecting a 2.11% improvement over its previous highest accuracy; HanChuan achieved an accuracy of 97.49%, showing a 2.4% improvement; and LongKou achieved an accuracy of 99.79%, providing a 0.15% improvement compared to its previous highest accuracy. Comparative analysis highlights the superiority of the proposed model, emphasizing improved classifcation accuracy with lower computational costs.Öğe Learning-Based Approaches for Voltage Regulation and Control in DC Microgrids with CPL(Multidisciplinary Digital Publishing Institute, 2023) Güngör, Mustafa; Asker, Mehmet EminThis article introduces a novel approach to voltage regulation in a DC/DC boost converter. The approach leverages two advanced control techniques, including learning-based nonlinear control. By combining the backstepping (BSC) algorithm with artificial neural network (ANN)-based control techniques, the proposed approach aims to achieve accurate voltage tracking. This is accomplished by employing the nonlinear distortion observer (NDO) technique, which enables a fast dynamic response through load power estimation. The process involves training a neural network using data from the BSC controller. The trained network is subsequently utilized in the voltage regulation controller. Extensive simulations are conducted to evaluate the performance of the proposed control strategy, and the results are compared to those obtained using conventional BSC and model predictive control (MPC) controllers. The simulation results clearly demonstrate the effectiveness and superiority of the suggested control strategy over BSC and MPC.Öğe Paralel Aktif Güç Filtresi Kullanarak Asenkron Motorun Reaktif Güç Kompanzasyonun PSCAD ile Modellenmesi(Dicle Üniversitesi, 2022) Güngör, Mustafa; Asker, Mehmet Emin; Kurt, Muhammed BahaddinBu çalışmada, üç fazlı bir asenkron (ASM) motorun üç faz-üç telli gerilim beslemeli paralel aktif güç filtresi (PAGF) yardımı ile güç katsayısının (cosφ) düzeltilmesi amaçlı PSCAD/EMTDC yazılımı kullanılarak hazırlanan bir benzetim çalışması verilmiştir. Benzetim modeli üç fazlı bir asenkron motor, üç faz-üç telli gerilim beslemeli paralel aktif güç filtresi ve AC kaynaktan oluşmaktadır. Paralel aktif güç filtresini kontrol için anlık reaktif güç teorisi tekniğini kullanarak referans akımlar üretmektedir. Fabrikalar ve işletmelerde yoğun olarak kullanılagelen üç fazlı asenkron motorların şebekeden anlık olarak değişen reaktif güç talepleri olmaktadır. Bu güç talepleri pasif filtrelerle düzeltilebilse de birçok olumsuz yönü de bulunmaktadır. Gerçekleştirilen benzetim çalışması ile güç katsayısının hızlı bir şekilde düzeltilebildiği gösterilmiştir. Ayrıca, yapılan benzetim çalışmasında PAGF’nin dinamik yük şartlarına cevabı oldukça iyi olduğu alınan sonuçlardan anlaşılmaktadır.Öğe Yakıt Hücresi ile Beslenen DC/DC Yükselticin Lineer Olmayan Yük Altında DC Bara Gerilim Kontrolü(IJANSER, 2023) Güngör, Mustafa; Asker, Mehmet EminDC mikro şebekelerde kullanılan güç dönüştürücüleri (doğrultma devreleri ve motor sürücü devreleri vb.) sıkı bir şekilde denetlendiğinde negatif empedans özellikleri gösterip Sabit Güç Yükü (CPL) gibi davranırlar. Yapısında birden fazla dönüştürücü bulunduran DC mikro şebekelerde artan bu negatif empedans, DC bara genliğini kararsız hale getirip, tüm sistemi olumsuz etkiler. Bu çalışmada Yakıt Hücresi (FC) üzerinden beslenen bir DC mikro şebekede, DC bara gerilimini bozma potansiyeline sahip olan sabit güç yüklerinin, sebep olduğu karasızlığın nedenleri ve çözüm yöntemleri hakkında bir değerlendirme yapıldı. Sonrasında Doğrusal Olmayan Bozulma Gözlemcisi (NDO) yardımı ile Geri Adım Kontrol (BSC) tasarımı incelendi. NDO+BSC kontrol ile geleneksel PI kontrol yöntemlerinin performansları karşılaştırıldı. DC bara gerilim regülasyonu ve kararlılığı içinyapılan bu karşılaştırmaMATLAB/Simulink yazılımı gerçekleştirildi. Alınan sonuçlar, NDO+BSCkontrolcününPI kontrolcüden daha iyi sonuçlar verdiği yapılan benzetim çalışması ile gösterildi.