Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley Online Library

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In brain computer interface (BCI), many transformation methods are used whenprocessing electroencephalogram (EEG) signals. Thus, the EEG can be represen-ted in different domains. However, designing an EEG-based BCI system withoutany transformation technique is a challenge. For this purpose, in this study, aBCI model is proposed without any transformation. The classification of cursordown and cursor up movements using the EEG signals received from the brain isaimed at in the proposed model. The EEG patterns were classified using twomethods. Firstly, EEG signals were classified by classic convolutional neural net-work (CNN). Secondly, proposed hybrid structure obtained the EEG features,which were classified by k-NN and SVM, using CNN. Classification with CNNarchitecture gave a result of 68.15% while the hybrid method using k-NN andSVM classifiers yielded 97.55% and 97.61% respectively. The hybrid proposedmethod were more successful than the studies in the literature.

Açıklama

Anahtar Kelimeler

classification, CNN, cursor movement, k-NN, raw EEG, SVM

Kaynak

INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY

WoS Q Değeri

Q3

Scopus Q Değeri

N/A

Cilt

Sayı

Künye

Türk, Ö. (2021). Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY p. 1-12.