Employing deep learning architectures for image-based automatic cataract diagnosis

dc.authorid0000-0002-1897-9830en_US
dc.authorid0000-0002-0060-1880en_US
dc.authorid0000-0003-4772-8317en_US
dc.contributor.authorAcar, Emrullah
dc.contributor.authorTürk, Ömer
dc.contributor.authorErtuğrul, Ömer Faruk
dc.contributor.authorAldemir, Erdoğan
dc.date.accessioned2021-10-26T12:25:30Z
dc.date.available2021-10-26T12:25:30Z
dc.date.issued2021en_US
dc.departmentMAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.description.abstractVarious eye diseases affect the quality of human life severely and ultimately may result in complete vision loss. Ocular diseases manifest themselves through mostly visual indicators in the early or mature stages of the disease by showing abnormalities in optics disc, fovea, or other descriptive anatomical structures of the eye. Cataract is among the most harmful diseases that affects millions of people and the leading cause of public vision impairment. It shows major visual symptoms that can be employed for early detection before the hypermature stage. Automatic diagnosis systems intend to assist ophthalmological experts by mitigating the burden of manual clinical decisions and on health care utilization. In this study, a diagnosis system based on color fundus images are addressed for cataract disease. Deep learning-based models were performed for the automatic identification of cataract diseases. Two pretrained robust architectures, namely VGGNet and DenseNet, were employed to detect abnormalities in descriptive parts of the human eye. The proposed system is implemented on a wide and unique dataset that includes diverse color retinal fundus images that are acquired comparatively in low-cost and common modality, which is considered a major contribution of the study. The dataset show symptoms of cataracts in different phases and represents the characteristics of the cataract. By the proposed system, dysfunction associated with cataracts could be identified in the early stage. The achievement of the proposed system is compared to various traditional and up-to-date classification systems. The proposed system achieves 97.94% diagnosis rate for cataract disease grading.en_US
dc.identifier.citationAcar, E., Türk, Ö., Ertuğrul, Ö. F., Aldemir, E. (2021).CEmploying deep learning architectures for image-based automatic cataract diagnosis. Turkish Journal of Electrical Engineering & Computer Sciences. 29(sı-1), s. 2649-2662en_US
dc.identifier.doi10.3906/elk-2103-77en_US
dc.identifier.endpage2662en_US
dc.identifier.issuesı-1en_US
dc.identifier.scopus2-s2.0-85117157495en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage2649en_US
dc.identifier.trdizinid526727en_US
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85117157495&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=b27c6689fa570bc14c653540aa32de59
dc.identifier.urihttps://journals.tubitak.gov.tr/elektrik/abstract.htm?id=29915
dc.identifier.urihttps://hdl.handle.net/20.500.12514/2908
dc.identifier.volume29en_US
dc.identifier.wosWOS:000706715300001en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTÜBİTAKen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering & Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learning, textural features, automatic diagnosis, cataracten_US
dc.titleEmploying deep learning architectures for image-based automatic cataract diagnosisen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
elk-29-si-1-5-2103-77.pdf
Boyut:
63.68 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Full Text - Article
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: