A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Sage Journals

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Automatic detection of Attention Deficit Hyperactivity Disorder (ADHD) based on the functional Magnetic Resonance Imaging (fMRI) through Deep Learning (DL) is becoming a quite useful methodology due to the curse of-dimensionality problem of the data is solved. Also, this method proposes an invasive and robust solution to the variances in data acquisition and class distribution imbalances. In this paper, a transfer learning approach, specifically ResNet-50 type pre-trained 2D-Convolutional Neural Network (CNN) was used to automatically classify ADHD and healthy children. The results demonstrated that ResNet-50 architecture with 10-k cross-validation (CV) achieves an overall classification accuracy of 93.45%. The interpretation of the results was done via the Class Activation Map (CAM) analysis which showed that children with ADHD differed from controls in a wide range of brain areas including frontal, parietal and temporal lobes.

Açıklama

Anahtar Kelimeler

attention deficit hyperactivity disorder; class activation maps; convolutional neural network; functional magnetic resonance imaging; transfer learning.

Kaynak

Clinical EEG and Neuroscience

WoS Q Değeri

Q3

Scopus Q Değeri

N/A

Cilt

Sayı

Künye

Uyulan, C., Erguzel, T. T., Turk, O., Farhad, S., Metin, B., & Tarhan, N. (2022). A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data. Clinical EEG and Neuroscience