A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data
dc.authorid | 0000-0002-0060-1880 | en_US |
dc.contributor.author | Uyulan, Caglar | |
dc.contributor.author | Erguzel, Turker Tekin | |
dc.contributor.author | Türk, Ömer | |
dc.contributor.author | Farhad, Shams | |
dc.contributor.author | Metin, Bariş | |
dc.contributor.author | Tarhan, Nevzat | |
dc.date.accessioned | 2022-12-21T06:00:49Z | |
dc.date.available | 2022-12-21T06:00:49Z | |
dc.date.issued | 2022 | en_US |
dc.department | MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.description.abstract | Automatic detection of Attention Deficit Hyperactivity Disorder (ADHD) based on the functional Magnetic Resonance Imaging (fMRI) through Deep Learning (DL) is becoming a quite useful methodology due to the curse of-dimensionality problem of the data is solved. Also, this method proposes an invasive and robust solution to the variances in data acquisition and class distribution imbalances. In this paper, a transfer learning approach, specifically ResNet-50 type pre-trained 2D-Convolutional Neural Network (CNN) was used to automatically classify ADHD and healthy children. The results demonstrated that ResNet-50 architecture with 10-k cross-validation (CV) achieves an overall classification accuracy of 93.45%. The interpretation of the results was done via the Class Activation Map (CAM) analysis which showed that children with ADHD differed from controls in a wide range of brain areas including frontal, parietal and temporal lobes. | en_US |
dc.identifier.citation | Uyulan, C., Erguzel, T. T., Turk, O., Farhad, S., Metin, B., & Tarhan, N. (2022). A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data. Clinical EEG and Neuroscience | en_US |
dc.identifier.doi | 10.1177/15500594221122 | en_US |
dc.identifier.pmid | 36052402 | en_US |
dc.identifier.scopus | 2-s2.0-85138308313 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1177/15500594221122 | |
dc.identifier.uri | https://pubmed.ncbi.nlm.nih.gov/36052402/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.12514/3178 | |
dc.identifier.uri | A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85138308313&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=0128eb28694b092589cd0a0f77709986 | |
dc.identifier.wos | WOS:000849065500001 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sage Journals | en_US |
dc.relation.ispartof | Clinical EEG and Neuroscience | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | attention deficit hyperactivity disorder; class activation maps; convolutional neural network; functional magnetic resonance imaging; transfer learning. | en_US |
dc.title | A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data | en_US |
dc.type | Article | en_US |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: