Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy?

Yükleniyor...
Küçük Resim

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Introduction: We aimed to develop a diagnostic deep learning model using contrast-enhanced CT images and to investigate whether cervical lymphadenopathies can be diagnosed with these deep learning methods without radiologist interpretations and histopathological examinations. Material method: A total of 400 patients who underwent surgery for lymphadenopathy in the neck between 2010 and 2022 were retrospectively analyzed. They were examined in four groups of 100 patients: the granulomatous diseases group, the lymphoma group, the squamous cell tumor group, and the reactive hyperplasia group. The diagnoses of the patients were confirmed histopathologically. Two CT images from all the patients in each group were used in the study. The CT images were classified using ResNet50, NASNetMobile, and DenseNet121 architecture input. Results: The classification accuracies obtained with ResNet50, DenseNet121, and NASNetMobile were 92.5%, 90.62, and 87.5, respectively. Conclusion: Deep learning is a useful diagnostic tool in diagnosing cervical lymphadenopathy. In the near future, many diseases could be diagnosed with deep learning models without radiologist interpretations and invasive examinations such as histopathological examinations. However, further studies with much larger case series are needed to develop accurate deep-learning models.

Açıklama

Anahtar Kelimeler

Deep learning, Granulomatous diseases, Lymphadenopathy, Lymphoma, Reactive hyperplasia, Squamous cell tumor

Kaynak

European Archives of Oto-Rhino-Laryngology

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

281

Sayı

1

Künye

Can, S., Türk, Ö., Ayral, M. et al. Can deep learning replace histopathological examinations in the differential diagnosis of cervical lymphadenopathy?. Eur Arch Otorhinolaryngol 281, 359–367 (2024). https://doi.org/10.1007/s00405-023-08181-9